

FEBS Letters 340 (1994) 276-280

FEBS 13769

Ca²⁺ influx evoked by inositol-3,4,5,6-tetrakisphosphate in *ras*-transformed NIH/3T3 fibroblasts

Minako Hashii^a,**, Masato Hirata^b, Shoichiro Ozaki^c, Yoshinori Nozawa^d, Haruhiro Higashida^a,*

^aDepartment of Btophysics, Neuroinformation Research Institute, Kanazawa University School of Medicine, 13-1 Takara-machi, Kanazawa 920, Japan

^bDepartment of Biochemistry, Faculty of Dentistry, Kyushu University, Fukuoka 812, Japan

^cDepartment of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790, Japan

^dDepartment of Biochemistry, Gifu University School of Medicine, Gifu 500, Japan

Received 6 January 1994; revised version received 4 February 1994

Abstract

Infusion of inositol-3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P₄) from the patch pipette into the cytoplasm, produced a biphasic intracellular free Ca^{2+} concentration ([Ca^{2+}], increase in ras-transformed NIH/3T3 (DT) cells. The Ins(3,4,5,6)P₄-induced increase in DT cells depended upon extracellular Ca^{2+} , and was enhanced by membrane hyperpolarization. Identical [Ca^{2+}], increases were observed with intracellular application of inositol-1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P₄) and inositol-1,3,4,6-tetrakisphosphate but not with inositol-1,2,4,5-tetrakisphosphate, inositol-1,4,5-trisphosphate or inositol-1,3,4,5,6-pentakisphosphate. Stimulation of DT cells with bradykinin increased the levels of Ins(3,4,5,6)P₄ and Ins(1,3,4,5)P₄. These results suggest that Ins(3,4,5,6)P₄ may serve as a second messenger for continuous Ca^{2+} influx along with other tetrakisphosphates downstream from bradykinin receptors in DT cells.

Key words: Receptor operated Ca²⁺ influx; Intracellular Ca²⁺ concentration; Inositol polyphosphate; Second messenger; Mouse fibroblast

1. Instruction

Inositol tetrakisphosphates are formed after stimulation of receptors for hormones and neurotransmitters in mammalian cells. Inositol-1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P₄) is produced by phosphorylation of inositol-1,4,5-trisphosphate (Ins(1,4,5)P₃) after application of agonist [1,2]. Ins(1,3,4,5)P₄ serves as a source inositol phosphate for producing inositol-1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P₅) via inositol-1,3,4-trisphosphate [3,4]. Recently it has been shown that agonists can increase the level of inositol-3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P₄) [5–9], from which one pathway of

Here we report the effect of intracellular application of $Ins(3,4,5,6)P_4$ on intracellular free Ca^{2+} concentration ($[Ca^{2+}]_1$) in fura-2 loaded mouse fibroblasts under voltage- clamp conditions. To characterize the mechanism of the Ca^{2+} influx produced by $Ins(3,4,5,6)P_4$ in mouse fibroblasts, we used Ki-ras-transformed NIH/3T3 fibroblast cells, in which we have demonstrated Ca^{2+} influx induced by $Ins(1,3,4,5)P_4$ [11]. Furthermore, we measured the $Ins(3,4,5,6)P_4$ as well as $Ins(1,3,4,5)P_4$ levels in ras-transformed fibroblasts stimulated with bradykinin in order to address the question of whether inositol tetrakisphosphates can be second messengers for bradykinin- induced Ca^{2+} influx in the cells.

Abbreviations: Ins(1,3,4,5)P₄, inositol-1,3,4,5-tetrakisphosphate; Ins(1,4,5)P₃, inositol-1,4,5-trisphosphate; Ins(1,3,4,5,6)P₅, inositol-1,3,4,5,6-pentakisphosphate; Ins(3,4,5,6)P₄, inositol-3,4,5,6-tetrakisphosphate; [Ca²⁺]₁, intracellular free Ca²⁺ concentration: DMEM. Dulbecco's modified Eagle's medium; Ins(1,3,4,6)P₄, inositol-1,3,4,6-tetrakisphosphate; Ins(1,2,4,5)P₄, inositol-1,2,4,5-tetrakisphosphate; [Ca²⁺]₂, extracellular Ca²⁺ concentration.

2. Materials and methods

2.1 Cell culture

v-Ki-ras-transformed NIH/3T3 fibroblasts (DT cells) [11] were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal calf serum. Cells were plated at a density of $1-1.5 \times 10^2$ cells/mm² on a fluorescence-free glass coverslip attached to a silicone tube (1.5-cm diameter and 0.9-cm height) with silicone sealant and cultured for 2 days at 37°C.

formation is dephosphorylation of $Ins(1,3,4,5,6)P_5$ from the abundant precursor pool of the cell membrane [9,10]. However, the functional role of $Ins(3,4,5,6)P_4$ is not known [10].

^{*}Corresponding author. Fax: (81) (762) 62 1783.

^{**}Present address: Department of Cortical Function Disorder, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187, Japan.

2.2. $[Ca^{2+}]_i$ measurement

Microspectrofluorometric determination of [Ca²⁺], with fura-2 was performed in DT cells, as described previously [11,12]. Briefly, they were loaded with 5 μ M fura-2 acetoxymethylester (Dojindo Laboratories, Kumamoto, Japan) for 45 min at 37°C. Fluorescence was measured at 35°C at a determined site through a pin hole (10–20 μ m) with alternating excitation wavelengths of 340 and 380 nm, using a Ca²⁺ microspectrometric system (model OSP-3, Olympus Opical Co., Tokyo).

2.3. Patch clamp and intracellular application

Patch voltage-clamp on fura-2-loaded cells was performed in the whole-cell configuration with a patch electrode [13], as described previously [11]. DT cells were superfused at 35°C with Docherty's Ca^{2+} solution [14] of the following composition (in mM), slightly modified from the original recipe: $CaCl_2$, 2; tetraethylammonium chloride, 100; CsCl, 5; $MgCl_2$, 1; glucose, 25; HEPES, 25, pH 7.3 (buffered by about 7.5 mM CsOH). Ca^{2+} -free solution was prepared by omitting $CaCl_2$ and adding 0.1 mM EGTA to the solution. Patch electrodes contained solution of the following composition (in mM): CsCl, 150; $MgCl_2$, 1; Na_2ATP , 1; fura-2, 0.1; HEPES, 10, pH 7.2, buffered with CsOH. The resistance of electrodes filled with the solution was 8–16 $M\Omega$. About 90 s after the initial touch, the electrode tip was sealed to the cell body by suction (seal resistance, >1 $G\Omega$), and the membrane patch under the electrode tip was broken by further suction. After successfully establishing the whole-cell recording mode the cell was voltage-clamped.

Inositol polyphosphates ($10 \,\mu\text{M}$) dissolved in intracellular recording medium in the patch pipettes were applied by diffusion into the cytoplasm after rupture of the membrane patch to establish whole-cell mode.

2 4. Inositol tetrakisphosphate measurement

Cells were cultured in inositol-free DMEM supplemented with 10% fetal calf serum. They were labeled with [3 H]inositol (7.7 μ Ci/ml, myo[3 H]inositol, 19.8 GBq/ mg (535 mCi/mg), Amersham, UK) for 96 h. All experiments were carried out at 37°C. At the end of the labeling protocols, the culture medium was aspirated, and cells were incubated for 20 min in HEPES-DMEM (pH 7.4). [3 H]inositol phosphate formation was initiated by replacing the preincubation buffer with fresh HEPES-DMEM containing 1 μ M bradykinin, and incubation was continued for 0–10 min. The reaction was stopped by adding to each well 50 μ l of ice-cold 100% trichloroacetic acid (final concentration 4.8%). After centrifugation, the supernatant was neutralized by adding 1 N NaOH, and treated with water-saturated diethylether (3 ml × 3). The [3 H]inositol tetrakisphosphates in the samples were separated on a Pertisphere Wax column (Whatman, Maidstone, UK), according to the method of Wong et al. [15].

2.5. Drugs

 $Ins(1,4,5)P_3$ and inositol-3-monophosphate $(Ins(3)P_1)$ were purchased from Dojindo Laboratories. $Ins(3,4,5,6)P_4$ [16], $Ins(1,3,4,5)P_4$ [17] and inositol-1,3,4,6-tetrakisphophate $(Ins(1,3,4,6)P_4)$ [18] were synthesized according the methods described by Watanabe et al. Inositol-1,2,4,5-tetrakisphosphate $(Ins(1,2,4,5)P_4)$ was synthesized by the method described elsewhere by one of the authors (M.H.).

3. Results and discussion

Application of $10 \,\mu\text{M}$ Ins $(3,4,5,6)P_4$ through a patch pipette in ras-transformed NIH/3T3 (DT) cells held at $-40 \,\text{mV}$ resulted in an initial elevation of $[\text{Ca}^{2+}]_{,}$ followed by a sustained increase, in the presence of extracellular Ca^{2+} (n=7) (Fig. 1A-a and B and Table 1), with the ED₅₀ of about 8 μ M. Elevation of $[\text{Ca}^{2+}]_{,}$ was completely abolished in zero extracellular Ca^{2+} ($[\text{Ca}^{2+}]_{,}$) (n=8) (Fig. 1A-b), and the elevation was recovered by restoration of external Ca^{2+} . On the contrary, the $[\text{Ca}^{2+}]_{,}$ rise evoked by injection of $\text{Ins}(1,4,5)P_3$ into the cyto-

plasm of DT cells was transient and was observed even in the absence of extracellular Ca²⁺ (Fig. 1B and Table 1). The results show that the source of Ca²⁺ for the Ins(3,4,5,6)P₄-induced [Ca²⁺], increase is extracellular in both the initial and sustained phases and for Ins(1,4,5)P₃ is largely due to mobilization of Ca²⁺ from intracellular stores [2] in DT cells.

As shown in Fig. 2A, Ins(3,4,5,6)P₄-evoked [Ca²⁺]_i increased as the membrane potential was hyperpolarized in DT cells. [Ca²⁺]_i in both the initial and late phases following injection of Ins(3,4,5,6)P₄ increased significantly as the membrane potential hyperpolarized below -15 or -40 mV, respectively (Fig. 2B), probably because of increased electrochemical driving forces [11]. Membrane hyperpolarization itself caused little or no increase of [Ca²⁺]_i as shown in inositol phosphate-free cells (Fig. 2C). A similar hyperpolarization-enhanced Ca²⁺ influx has been reported in oocytes expressing muscarinic subtype m3 receptors [19].

The specificity of the action of $Ins(3,4,5,6)P_4$ on Ca^{2+} influx was examined by applying other inositol tetrakisphosphate isomers in DT cells (Table 1). $Ins(1,3,4,5)P_4$ and $Ins(1,3,4,6)P_4$ (10 μ M in pipettes) produced similar biphasic $[Ca^{2+}]_1$ elevations in the presence of external Ca^{2+} , as for $Ins(3,4,5,6)P_4$, and complete suppression was observed in the absence of external Ca^{2+} . Interestingly, $Ins(1,2,4,5)P_4$, a nonbiological synthetic inositol tetrakisphosphate, resulted in transient but extracellular Ca^{2+} -dependent Ca^{2+} influx, as produced by the three naturally occurring inositol tetrakisphosphates. $Ins(1,3,4,5,6)P_5$, $Ins(3)P_1$ and $GDP-\beta$ -S had no ability for Ca^{2+} mobilization and Ca^{2+} influx. $GTP-\gamma$ -S reproduced

Table 1 Effect of 10 μ M inositol phosphates, 100 μ M GTP- γ -S and 100 μ M GDP- β -S on [Ca²⁺], elevation in DT cells

Compounds included in pipettes	DT cells		
	2 mM [Ca ²⁺] ₀		0 mM [Ca ²⁺] ₀
	Initial peak	at 10 min	at 1 min
None	115 ± 3 (7)	116 ± 5 (7)	102 ± 3 (5)
$Ins(3)P_1$	136 ± 11 (6)	$117 \pm 5 (5)$	$105 \pm 1 (5)$
Ins(1,4,5)P ₃	211 ± 15 (6)**	$113 \pm 8 (6)$	222 ± 15 (5)**
$Ins(1,3,4,5)P_4$	430 ± 70 (6)**	188 ± 22 (6)*	$103 \pm 1 (5)$
$Ins(1,3,4,6)P_4$	441 ± 72 (8)**	$182 \pm 17 (5)*$	$100 \pm 0 (5)$
$Ins(3,4,5,6)P_4$	$334 \pm 29 \ (8)**$	171 ± 14 (7)*	$103 \pm 1 (8)$
$(3,4,5,6)P_4 + (1,4,5)P_3$	387 ± 40 (7)**	199 ± 23 (7)*	241 ± 41 (5)*
$Ins(1,2,4,5)P_4$	$208 \pm 23 \ (7)**$	$92 \pm 6 (4)$	$107 \pm 4 (8)$
Ins(1,3,4,5,6)P ₅	123 ± 16 (4)	$100 \pm 4 (4)$	103 ± 4 (6)
GTP-y-S	261 ± 40 (6)*	114 ± 4 (4)	215 ± 27 (7)**
GDP-\$-S	117 ± 6 (6)	$122 \pm 13 (5)$	$103 \pm 1 (5)$

Data are shown as mean \pm S.E.M. of the [Ca²⁺], level, represented as the percentage of the value of [Ca²⁺], just before membrane breaking. Number of experiments are shown in parentheses. * and **, significantly different from values in isomer-free DT cells, P < 0.05 and 0.01, respectively.

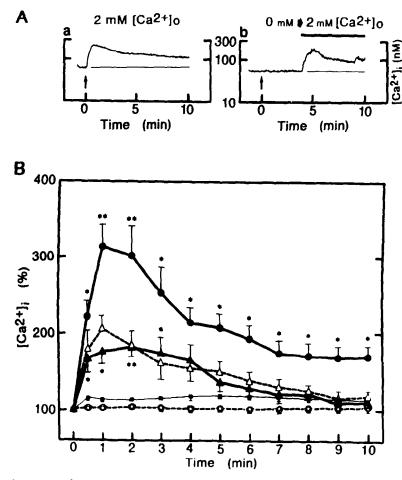


Fig. 1. Effect of extracellular Ca^{2+} on the $[Ca^{2+}]_1$ elevation induced by intracellular application of $Ins(3,4,5,6)P_4$ or $Ins(1,4,5)P_3$ in DT cells. (A) $[Ca^{2+}]_4$ was measured in DT cells in the presence of 2 mM extracellular Ca^{2+} (a) or in zero extracellular Ca^{2+} with 0.1 mM EGTA (b). Changes in $[Ca^{2+}]_4$ were recorded under voltage-clamp with patch pipettes filled with 10 μ M $Ins(3,4,5,6)P_4$. $Ins(3,4,5,6)P_4$ was loaded into cells by diffusion from the pipettes after breaking the membrane at the time indicated by arrows. In (b), $[Ca^{2+}]_5$ concentration was raised to 2 mM from about 4 min after injection, indicated by thick bars. The holding membrane potential was -40 mV. (B) Plots of time course of $[Ca^{2+}]_5$, change produced by intracellular application of $Ins(3,4,5,6)P_4$ or $Ins(1,4,5)P_3$ in DT cells. $[Ca^{2+}]_5$ levels are represented as% of the value of $[Ca^{2+}]_5$, just before membrane rapture. Points show mean values in response to 10μ M $Ins(3,4,5,6)P_4$ (\bullet , \circlearrowleft), 10μ M $Ins(1,4,5)P_3$ (\bullet , \circlearrowleft), and isomer-free control solution (\bullet , \boxminus), in the presence (filled symbols) or absence (open symbols) of 2 mM extracellular Ca^{2+} , respectively. Bars indicate S. E. M. Numbers of experiments are 5–7. * and ***, significantly different from the values at the same time point in isomer-free cells, P < 0.05 and 0.01, respectively.

the effect of $Ins(1,4,5)P_3$, not that of the inositol tetrakisphosphate. Use of $Ins(3,4,5,6)P_4$ in combination with $Ins(1,4,5)P_3$ had little or no additive effect, suggesting that Ca^{2+} influx is strictly specific to $Ins(3,4,5,6)P_4$ in DT cells

DT cells [11] or *Xenopus* oocytes with m3-muscarinic acetylcholine receptors expressed [19] possess a Ca²⁺ influx pathway that becomes prominent by membrane hyperpolarization. Interestingly, application of bradykinin to the *ras*-transformed cells [11] or of acetylcholine to the oocytes [19] evokes repetitive transient increases of Ca²⁺, or cytosolic Ca²⁺ oscillations. Ca²⁺ oscillations in these preparations have been reported to occur in an extracellular Ca²⁺ dependent-manner and to be enhanced by hyperpolarization [11,19]. This suggests that Ca²⁺ influx across the plasma membrane is necessary for maintenance of agonist-induced Ca²⁺ oscillations. Therefore, we measured the Ins(3,4,5,6)P₄ and Ins(1,3,4,5)P₄ levels

in ras-transformed fibroblasts stimulated with bradykinin

The pre-stimulating control level of $Ins(1,3,4,5)P_4$ and $Ins(3,4,5,6)P_4$ was 768 ± 18 dpm (mean ± S.E.M., n = 4) and 131 ± 24 dpm (n = 4) in DT cells, respectively. Bradykinin stimulation increased the level of radioactivity in $[^{3}H]Ins(1,3,4,5)P_{4}$ by 2.6- to 3.1-fold and $[^{3}H]Ins(3,4,5,6)P_{4}$ by 2.8- to 5.0-fold (Fig. [3H]Ins(1,3,4,5)P₄ levels increased rapidly, while [3H]Ins(3,4,5,6)P₄ levels increased slowly, appearing to reach a plateau after 5 min following receptor activation. The maximal peak level was 2359 ± 616 dpm (n = 3) at 1 min for $[^{3}H]Ins(1,3,4,5)P_{4}$ and 658 ± 180 dpm (n = 3)at 5 min for [3H]Ins(3,4,5,6)P₄, respectively. A similar long-lasting increase of the Ins(3,4,5,6)P₄ level has been reported in response to stimulation by angiotensin II in adrenal glomerulosa cells [5], fMLP in HL-60 myeloid cells [6], bombesin in AR4-2J pancreatoma cells [7], and

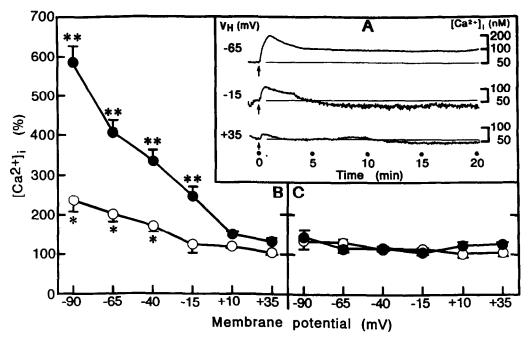


Fig. 2. Relationship between $[Ca^{2+}]_i$ and membrane potential in DT cells with or without $Ins(3,4,5,6)P_4$ injected. (A) Time course of $[Ca^{2+}]_i$ in voltage-clamped DT cells at three different holding potentials. The membrane potential is shown at the left. $10 \,\mu\text{M}$ $Ins(3,4,5,6)P_4$ was infused into the cells at the time indicated by the arrow, as described in Fig. 1. Plots of $[Ca^{2+}]_i$ as a function of membrane potential in the presence (B) or absence (C) of $10 \,\mu\text{M}$ $Ins(3,4,5,6)P_4$ in the pipettes. $[Ca^{2+}]_i$ level is represented as % of the value of $[Ca^{2+}]_i$ just before membrane rupture. Each point shows the mean, and bars indicate S.E.M. Numbers of experiments are 5–8. Symbols indicate $[Ca^{2+}]_i$ immediately after injection (\bullet) and after $10 \,\text{min}$ (\bigcirc). * and **, significantly different from values at the identical membrane potential in isomer-free DT cells as indicated in C, P < 0.05 and 0.01, respectively.

vasopressin in WRK-1 rat mammary tumor cells [8]. Together, these results show that $Ins(3,4,5,6)P_4$ is a second messenger in a variety of cells but not specifically in ras-transformed cells.

In the present experiment, intracellular injection of the three inositol tetrakisphosphates, $Ins(3,4,5,6)P_4$ Ins(1,3,4,5)P₄, Ins(1,3,4,6)P₄, mimicked the bradykinininduced increases of [Ca2+], due to Ca2+ influx in rastransformed fibroblasts, with little or no specificity between the three, but with a clear different action from those of $Ins(1,4,5)P_3$, $Ins(1,2,4,5)P_4$, and $Ins(1,3,4,5,6)P_5$. In DT cells, $Ins(1,3,4,5)P_4$ [11] and $Ins(3,4,5,6)P_4$ do not require the simultaneous injection with Ins(1,4,5)P₃ in order to stimulate Ca²⁺ entry, as was reported previously [20], suggesting that these compounds alone can elicit Ca²⁺ influx. Recently, it has been shown that there are receptors for Ins(1,3,4,5)P₄ which are Ca²⁺-permeable channels in the plasma membrane [20-22]. Our results suggest that inositol tetrakisphosphate receptors and/or Ca²⁺-permeable channels may have a non-selective sensitivity for the naturally occurring tetrakisphosphates tested.

As shown in Fig. 1A, the $[Ca^{2+}]_i$ increase evoked by $Ins(3,4,5,6)P_4$ in pipettes both in the presence of external Ca^{2+} and after Ca^{2+} restoration decayed to result in the biphases. Since fresh $Ins(3,4,5,6)P_4$ can be supplied through the pipettes, this decay may not be due to degradation of $Ins(3,4,5,6)P_4$, but to negative feedback or

desensitization of $Ins(3,4,5,6)P_4$ receptors to inactivate Ca^{2+} influx.

Three pathways which lead to accumulation of $Ins(3,4,5,6)P_4$ are known: (i) dephosphorylation by 1-phosphatase action on $Ins(1,3,4,5,6)P_5$ [5,7,9]; (ii) inhibition of $Ins(3,4,5,6)P_4$ -1-kinase [10]; or (iii) isomerase action on inositol-1,4,5,6-tetrakisphosphate [9]. Whichever route is taken transformed NIH/3T3 cells, the level of $Ins(3,4,5,6)P_4$ was slowly increased in response to bradykinin. Although $Ins(1,3,4,5)P_4$ formation was much larger than that of $Ins(3,4,5,6)P_4$ in ras-transformed cells, the findings suggest that $Ins(3,4,5,6)P_4$ is a second messenger downstream from bradykinin receptor stimulation, specially in the late phase.

As a preliminary result, we have observed that application of Ins(3,4,5,6)P₄ into parental 'untransformed' NIH/3T3 fibroblast cells produces an initial elevation of [Ca²⁺]₁ but no sustained elevation. The difference in response between control and *ras*-transformed cells seems not to lie in a quantitative difference in Ins(3,4,5,6)P₄ formation but in a mechanism whereby Ins(3,4,5,6)P₄-induced Ca²⁺ influx is maintained at a higher level in *ras*-transformed cells. The important question arises as to why Ins(3,4,5,6)P₄ injection produces only a Ca²⁺ plateau rather than mimics cytosolic Ca²⁺ oscillations in *ras*-transformed cells. The reason may reside on no activation of Ca²⁺ pumps which may not be induced by injection of Ins(3,4,5,6)P₄, whereas application of bradykinin

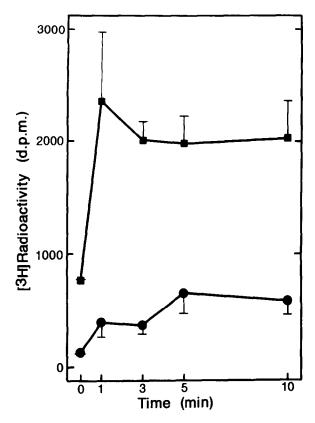


Fig. 3. Changes in the level of $[^3H]$ -labelled Ins(1,3,4,5)P₄ and Ins(3,4,5,6)P₄ in DT cells in response to bradykinin. Cells were labelled to equilibrium with $[^3H]$ inositol and then stimulated with 1 μ M bradykinin for the periods indicated. Inositol tetrakisphosphates were extracted and separated by high pressure liquid chromatography on Partisphere-WAX columns and their radioactivities were determined. Each point shows the mean of levels of $[^3H]$ Ins(1,3,4,5)P₄ (\blacksquare) and $[^3H]$ Ins(3,4,5,6)P₄ (\blacksquare) at the indicated time points. Bars indicate S.E.M. Numbers of experiments are 3–6.

may be able to do, as pointed out previously [11]. In summary, Ins(3,4,5,6)P₄ in concert with other tetra-kisphosphates may play an important role in producing Ca²⁺ influx to maintain the [Ca²⁺], at a certain level during cytosolic Ca²⁺ oscillations following agonist-stimulation in *ras*-transformed fibroblast cells.

Acknowledgements: We thank H. Robinson for a critical reading of the manuscript.

References

- Irvine, R.F., Letcher, A.J., Heslop, J.P. and Berridge, M.J. (1986) Nature 320, 631-634.
- [2] Berridge, M.J. and Irvine, R.F. (1989) Nature 341, 197-205.
- [3] Stephens, L.R., Hawkins, P.T., Barker, C.J. and Downes, C.P. (1988) Biochem. J. 253, 721-733.
- [4] Shears, S.B. (1989) J. Biol. Chem. 264, 19879-19886.
- [5] Balla, T., Baukal, A.J., Hunyady, L and Catt, K.J. (1989) J. Biol. Chem. 264, 13605–13611.
- [6] Pittet, D., Schlegel, W., Lew, D.P., Monod, A. and Mayr, G.W. (1989) J. Biol. Chem. 264, 18489–18493.
- [7] Menniti, F.S., Oliver, K.G., Nogimori, K., Obie, J.F., Shears, S.B. and Putney, J.W., Jr. (1990) J. Biol. Chem. 265, 11167–11176.
- [8] Barker, C.J., Wong, N.S., Maccallum, S.M., Hunt, P.A., Michell, R.H. and Kirk, C.J. (1992) Biochem. J. 286, 469-474.
- [9] Oliver, K.G., Putney, J.W., Jr., Obie, J.F. and Shears, S.B. (1992)J. Biol. Chem. 267, 21528–21534.
- [10] Menniti, F.S., Oliver, K.G., Putney, J.W., Jr. and Shears, S.B. (1993) Trends Biochem. Sci. 18, 53-56.
- [11] Hashii, M., Nozawa Y. and Higashida, H. (1993) J. Biol. Chem. 268, 19403–19410.
- [12] Ogura, A., Myojo, Y. and Higashida, H. (1990) J. Biol. Chem. 265, 3577–3584.
- [13] Penner, R., Matthews, G. and Neher, E. (1988) Nature 334, 499–
- [14] Docherty, R.J. (1988) J. Physiol. 398, 33-47.
- [15] Wong, N.S., Barker, C.J., Morris, A.J., Craxton, A., Kirk, C.J. and Michell, R.H. (1992) Biochem. J. 286, 459–468.
- [16] Watanabe, Y., Nakahira, H., Bunya, M and Ozaki, S. (1987) Tetahedron Lett. 28, 4179–4180.
- [17] Watanabe, Y., Fujimoto, T., Shinohara, T. and Ozaki, S. (1991) J. Chem. Soc. Chem. Commun. 1991, 428–429.
- [18] Watanabe, Y., Mitani, M., Morita, T. and Ozaki, S. (1989) J. Chem. Soc. Chem. Commun. 1989, 482–483.
- [19] Girard, S. and Clapham, D. (1993) Science 260, 229-232.
- [20] Lückhoff, A. and Clapham, D.E. (1992) Nature 355, 356-358.
- [21] Irvine, R.F. (1992) FASEB J. 6, 3085-3091.
- [22] Neher, E. (1992) Nature 355, 298-299.